
Bcome documentation
Release 3.0.0

webzakimbo

Jan 23, 2023

Installation

1 Requirements 3

2 Getting Started 5

3 Installing and Initializing Bcome 7

4 Adding AWS authorization 9

5 Adding GCP authorisation 13

6 Estate 17

7 Network Configuration 19

8 Nodes 21

9 @node 27

10 SSH 29

11 Overview 31

12 Namespace attributes 33

13 Inheritance & overrides 39

14 Alternative configuration 41

15 Static manifests 45

16 Navigation 47

17 Command Menu 49

18 Executing Commands 55

19 @node methods 57

20 Monkey Patches 59

i

21 Optimising Ssh 61

22 Ping 63

23 SSH to a server 65

24 Interactive Mode 67

25 Run 69

26 Tunnel 71

27 Pseudo-tty 73

28 Interactive Kubectl 75

29 Interactive Helm 77

30 Container shell 79

31 The Metadata Framework 81

32 Metadata Encryption 83

33 Metadata Commands 85

34 Bash scripting 87

35 External Scripts 89

36 Internal Scripts 91

37 Registry Overview 95

38 Registry Configuration File 97

39 Registry Configuration Attributes 99

40 Registry method types 101

41 Overview 105

42 Configuration 107

ii

Bcome documentation, Release 3.0.0

Welcome to our documentation

For example configuration and functionality demonstrations please see the Guides.

Starting from scratch? Jump to our Requirements or Getting Started.

whats-new-in-3.0.0

breaking-changes-in-3.0.0

Installation 1

https://guides.bcome.com

Bcome documentation, Release 3.0.0

2 Installation

CHAPTER 1

Requirements

• Ruby 2.5 or greater.

• A running ssh-agent with your keys added if you intend to interact with servers over SSH. For programmatic
access, Bcome makes use of your SSH_AUTH_SOCK environment variable to find your ssh-agent (and then
your keys).

• kubectl installed and in PATH if you intended to interact with Kubernetes clusters (contextual kubectl, tied
to a Kubernetes cluster or namespace).

• helm installed and in PATH if you intend to interact with Kubernetes clusters and wish to add a Helm hook
(contextual helm invocation, tied to a Kubernetes cluster or namespace)

Note: Bcome uses the -J syntax rather than ProxyCommand to traverse SSH proxies. An SSH version compatible
with the -J flag, such as OpenSSH 7.3 or greater, is required to be installed on the connecting client & proxies.

Warning: Developers using an M1 Apple Mac will need to ensure that libsodium is installed on their system.
This can be installed with homebrew.

3

Bcome documentation, Release 3.0.0

4 Chapter 1. Requirements

CHAPTER 2

Getting Started

2.1 Setting up your project

You will need to install and initialize Bcome.

See here for how: Installing and Initializing Bcome

2.2 Define your nodes

Once you’ve created your project structure the next step is to populate your networks.yml configuration file with your
node structure.

See Network Configuration and Nodes for further information.

2.3 Configure your cloud authorizations

To populate your installation with servers or load in a Kubernetes cluster you will need to add an authorization.

An authorization may be associated with more than one node, and you may add as many different authorizations as
you like to your installation, adding as many different AWS or GCP accounts to your project as you need.

When you interact with a Bcome node configured for an authorisation, the framework will authenticate you against
the cloud provider in question so that it may retrieve resources.

To add an AWS authorization. See: Adding AWS authorization.

To add a GCP authorization. See: Adding GCP authorisation.

Note: When manually specifying servers you will not need to create an authorisation. See Static manifests for further
information.

5

Bcome documentation, Release 3.0.0

2.4 Add your cloud authorisation to your nodes

Having added cloud authorisations you will likely want to configure them within your nodes. This is done by adding
to your networks.yml configuration file.

For a full list of networks.yml attributes and their usage see Namespace attributes.

Our Guides site is also a useful resource, as it includes example configuration.

2.5 Setup your SSH pathways

If you’re not solely interacting with containers, then configuring SSH is core to Bcome.

If your server instances are not directly accessible you will need to configure your SSH pathways so that Bcome
knows how to navigate the proxies you have in place. Your SSH pathways will instruct Bcome as to how to proxy its
connections allowing it to access your servers.

This is done by adding to your networks.yml configuration file.

For configuration details, please refer to the SSH Settings Attributes documentation. Our Guides site also has example
configuration.

2.6 The Registry & Orchestration

The in-built Registry framework lets you add re-usable orchestration onto your nodes.

It will allow you to define and re-use custom orchestration tasks that can be used to interact with the nodes - your
servers, clusters, containers, or ad-hoc kubernetes resources - in your installation.

See Registry Overview and Registry method types for more information. Our Guides site also has example configura-
tion.

6 Chapter 2. Getting Started

https://guides.bcome.com
https://docs.bcome.com/en/latest/network/network-configuration-attributes.html#ssh-settings-attributes
https://guides.bcome.com
https://guides.bcome.com

CHAPTER 3

Installing and Initializing Bcome

Hint: Make sure you’ve read the installation requirements: Installing and Initializing Bcome, and if you’re new to
Ruby, then consider using Rvm to manage it.

Create a project directory:

mkdir project
cd project

Now install the Bcome Gem manually:

gem install bcome

Or, via a Gemfile:

Gemfile contents. Place this in the root of your project directory.
source 'https://rubygems.org'
gem 'bcome'

Which you can then install via bundler:

gem install bundler
bundle install

Now run the initializer to create your configuration files & directories:

bcome init

Or if you’ve installed via bundler

bundle exec bcome init

7

https://rvm.io
https://https://rubygems.org/gems/bcome

Bcome documentation, Release 3.0.0

Hint: It’s better to use bundler and even better to alias bundle exec bcome in your $PATH to shorten how
you invoke the framework. I normally alias to just b

If you’ve correctly set everything up, your project directory should now look as follows:

.
.aws/
.gauth/

googles-not-so-secret-client-secrets.json
bcome

k8_hierarchy.yml
metadata/
networks.yml
orchestration/
registry.yml

8 Chapter 3. Installing and Initializing Bcome

CHAPTER 4

Adding AWS authorization

AWS authorization is achieved by linking an AWS IAM user with your local instance of the Bcome client.

If you want to integrate an AWS account, then follow the steps here.

Note: You may connect as many AWS accounts as you like, and mix with as many accounts from other cloud
providers.

Bcome will allow you to interact with them all in the same project.

4.1 Create directory structure

You haven’t already done so, run bcome init to setup your project directory structure. For more information see
Installing and Initializing Bcome.

See also Getting Started.

4.1.1 Generate an AWS access key and secret access key

From within your chosen AWS account, generate a secret key and secret access key for the IAM user you wish to link
to Bcome. This IAM user should have:

• Programmatic access to the AWS API

• As minimum, an associated policy of AmazonEC2ReadOnlyAccess

Have a look here for an AWS guide on how to do this.

The Bcome framework will use this key & secret in order to conduct queries against Amazon’s EC2 API. This allows
Bcome to populate your instance with resources from your account.

9

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

Bcome documentation, Release 3.0.0

Note: If you add custom orchestration to Bcome that requires access to features other than EC2, you will of course
need to augment the permissions available to your IAM user.

4.1.2 Add the AWS keys to your bcome project

Create a file named keys in the .aws directory created by bcome init in the root of your project.

Within this file, create a key to reference your AWS account e.g. my_key

And then within your keys file add in the following yaml:

my_key:

aws_access_key_id: [your access key]
aws_secret_access_key: [your secret access key]

Warning: Do not commit your keys file to source control.

4.1.3 Configuring multiple AWS accounts

You can add as many AWS accounts as you like. This allows you to work with machines from disparate accounts
within the same project.

Given a second AWS account referenced by the key ‘my other key’, your keys file would look as follows:

my_key:

aws_access_key_id: [your access key]
aws_secret_access_key: [your secret access key]

my_other_key:
aws_access_key_id: [second access key]
aws_secret_access_key: [second secret access key]

Note: For a demonstration of an AWS authorization in use, please see the AWS EC2 authentication guide

4.1.4 Using an AWS authorization

To make use of your authorization in your networks.yml file, your configuration would look as follows:

parent:child:
type: collection
description: AWS Authorisation
network:
type: ec2
credentials_key: YOUR_CREDENTIAL_KEY_NAME
provisioning_region: PROVISIONING_REGION

10 Chapter 4. Adding AWS authorization

https://guides.bcome.com/en/latest/drivers/ec2.html

Bcome documentation, Release 3.0.0

For more information on your networks.yml file, see here: Nodes.

For further configuration options, see Namespace attributes.

4.1. Create directory structure 11

Bcome documentation, Release 3.0.0

12 Chapter 4. Adding AWS authorization

CHAPTER 5

Adding GCP authorisation

GCP authorisation may be achieved either via OAuth 2.0, and/or by directly linking a SERVICE_ACCOUNT.

If you want to integrate a GCP account, then follow the steps here.

Note: You may connect as many GCP accounts as you like (using a mix of OAuth 2.0 & Service Account authorisa-
tion), and mix with as many accounts from other cloud providers.

Bcome will allow you to interact with them all in the same project.

5.1 Create directory structure

For both OAuth 2.0 and Service account authorisation methods, ensure you have a directory named .gauth
in the root of your project directory.

You haven’t already done so, run bcome init to setup your project directory structure. For more information see
Installing and Initializing Bcome.

See also Getting Started.

Warning: Do not commit any files within your .gauth directory to source control. Your OAuth 2.0 & ServiceAc-
count secrets will live here, as well as any access tokens returned from GCP when OAuth 2.0 is in use.

5.2 OAuth 2.0

5.2.1 Your own OAuth 2.0 Application

To integrate OAuth 2.0 with Bcome, you’ll need to create a client id and secret. To do this, follow these steps:

13

Bcome documentation, Release 3.0.0

• Login to your GCP web console

• From your projects list select your project (or create a new one)

• Go to APIs & Services

• Go to Credentials

• Select Create Credentials, then select OAuth client id

• Under Application Type select Desktop app (previously this was ‘other’)

• Under Name, enter a name for your Oauth client application.

• Hit Create

Note: If you are prompted to create an OAuth consent screen, you will only need to do so with the minimal required
settings of App Name, User Support Email, and Developer Email Address.

Next, make a note of the Client Id and Client Secret then in your .gauth directory create a file named
.gauth/your-secrets-file.json and add the following contents:

{
"installed":
{
"client_id": "Your client id",
"client_secret": "Your client secret",
"type": "authorized_user"

}
}

If you forgot to make a note of the Client Id and Client Secret, then:

• Login to you GCP web console

• From your projects list select your project

• Go to APIs & Services

• Go to Credentials

• Select your OAuth 2.0 Client application

• Select Download JSON

Save this file to your .gauth directory as .gauth/your-secrets-file.json. This file may differ slightly in structure to that
suggested above, but it will be compatible.

Note: Your .gauth/your-secrets-file.json can be called anything you like. You’ll reference this file later on when you
add your authorisation to your network configuration.

Bcome supports multiple GCP authorisations at the same time (either for different GCP accounts, or for different
projects within the same account), and you would integrate these by adding a secrets file per GCP project to your
.gauth directory.

Warning: Don’t commit your secrets file to source control!

As a final step, visit GCP Compute Engine API and hit ENABLE to enable the Compute Engine API.

14 Chapter 5. Adding GCP authorisation

https://console.cloud.google.com/
https://console.cloud.google.com/
https://console.developers.google.com/apis/api/compute.googleapis.com/overview

Bcome documentation, Release 3.0.0

To make use of this mechanism in your network.yml file, your configuration would look as follows:

parent:child:
type: collection
description: Example custom OAuth application

network:
type: gcp
project: YOUR_PROJECT_NAME
authentication_scheme: oauth
secrets_filename: YOUR_SECRETS_FILE_NAME.json
service_scopes:
- https://www.googleapis.com/auth/compute.readonly
- https://www.googleapis.com/auth/cloud-platform

Hint: Bcome’s network configuration uses an inheritance model allowing for configuration to be inherited, and
overidden, in child nodes. This allows child nodes to have derived versions of base network configurations, keeping
your config as DRY as possible. See Inheritance & overrides for more information.

For more information on your networks.yml file, see here: Nodes.

5.2.2 OAuth using application default credentials

You can authorise with OAuth using Google’s default OAuth application if you don’t want to setup your own.

Assuming you’ve run bcome init you’ll see the following file in your .gauth directory:

.gauth
googles-not-so-secret-client-secrets.json

This is Google’s default Oauth credentials for GCP. This file, as the name suggests, is not-so-secret - it’s packaged
along with the gcloud distribution, and is what the gcloud binary uses in its authorisation process. Authorising with
this will instruct the framework to authenticate and authorise you in an OAuth loop against Google’s default OAuth
application.

To make use of this mechanism in your networks.yml file, your configuration would look as follows:

clusters:

type: collection
description: A collection making use of default Google Oauth
network:
type: gcp
authentication_scheme: oauth
secrets_filename: googles-not-so-secret-client-secrets.json
service_scopes:
- openid
- https://www.googleapis.com/auth/userinfo.email
- https://www.googleapis.com/auth/cloud-platform
- https://www.googleapis.com/auth/appengine.admin
- https://www.googleapis.com/auth/compute
- https://www.googleapis.com/auth/accounts.reauth

Note that you will still need to require defined service scopes, as above.

5.2. OAuth 2.0 15

Bcome documentation, Release 3.0.0

For more information on your networks.yml file, see here: :doc: ../core-concepts/nodes.

5.3 Service Account

Service Account authorisation requires credentials in JSON format.

• Follow this guide here in order to create your credentials: Creating and managing service account keys

• Download the credentials file in JSON format and save it to your .gauth directory. Your file will look something
like this:

{
"type": "service_account",
"project_id": "your project id",
"private_key_id": "your private key id",
"private_key": "your private key",
"client_email": "your client email",
"client_id": "your client id",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "your client x509 cert url"

}

Save your service account credentials json file to your .gauth directory under any name you like. You’ll reference this
file later on in your networks.yml configuration file.

Note: For demonstrations of GCP authorisation in use, please see our guides: GCP OAuth 2.0 authentication guide /
GCP Service Account authentication guide.

Hint: To add your GCP authorisation to your network configuration, see Network Configuration.

To make use of this mechanism in your network.yml file, your configuration would look as follows:

parent:child:

type: collection
description: Service account authorisation

network:
type: PROJECT_NAME
project: wbznet
authentication_scheme: oauth
service_scopes:
- https://www.googleapis.com/auth/compute.readonly
- https://www.googleapis.com/auth/cloud-platform
service_account_credentials: YOUR_SERVICE_ACCOUNT_CREDENTIALS.json

For more information on your networks.yml file, see here: Nodes.

16 Chapter 5. Adding GCP authorisation

https://cloud.google.com/iam/docs/creating-managing-service-account-keys
https://guides.bcome.com/en/latest/drivers/gcp-oauth.html
https://guides.bcome.com/en/latest/drivers/gcp-service-account.html

CHAPTER 6

Estate

The sum-total of all your defined Bcome Nodes is referred to as your Estate.

You may construct your estate as follows:

6.1 Single network

A single network from a given cloud provider e.g. a Production environment in AWS or GCP.

This is the most basic setup.

6.2 Multi-network

Any number of networks from a given cloud provider e.g. multiple pipeline environments in a single cloud provider
that you wish to manage.

This is a typical setup where multiple development & production environments are in play.

6.3 Multi-cloud

Any combination of networks/projects from multiple clouds e.g. a Production environment environment in one cloud,
and perhaps a fallback used as part of a disaster recovery system in another.

6.4 Static

On-premise infrastructure, or integrations of providers for which Bcome does not yet have a dedicated driver where
your inventories are not dynamically retrieved - rather they are statically defined.

17

Bcome documentation, Release 3.0.0

6.5 Hybrid Cloud

Any combination of the above e.g. on-premise infrastructure that you wish to orchestrate alongside cloud-based
application environments.

Note: Bcome will allow you to merge all your infrastructure into one installation, such that you may orchestrate
across your different clouds & networks at the same time.

18 Chapter 6. Estate

CHAPTER 7

Network Configuration

Your Network Configuration defines the architecture of your Nodes.

In its most basic form it is a single YAML configuration file named networks.yml and stored within your bcome
configuration directory (see: Getting Started).

Network Configuration takes the following form:

node_key:

attribute: value

node_key:child_node_key
attribute: value

For further information please refer to our Nodes documentation.

The Guides also have example implementations to get you started.

Note: Your network configuration may also be overriden and/or supplemented with additional configuration (see
Alternative configuration).

19

https://guides.bcome.com

Bcome documentation, Release 3.0.0

20 Chapter 7. Network Configuration

CHAPTER 8

Nodes

8.1 Introduction

A node is an object that represents a resource within Bcome. It can be navigated to using the CLI, or it can be interacted
with programmatically.

Exposed onto any node object - whether reached via CLI navigation, directly through keyed-access, or in custom code
from a Registry script - are the methods provided by the framework (by the menu) and any custom tasks added by you
to your Registry (see Registry Overview).

Your installation’s architecture - its interface - is determined directly by how you declare your nodes in your net-
works.yml file. How you do this will determine the application the framework generates (and how you navigate it, see:
Navigation), and what shared behaviour or configuration is inherited by child nodes.

Note: If you don’t have a networks.yml file yet, you will need to initialize your project. See: Installing and Initializing
Bcome.

8.2 Declaring Nodes

Nodes in your networks.yml configuration are declared via YAML (see: Namespace attributes) in the following for-
mat:

node_key:

description: A description of your node
type: the node type

Nodes are laid out in a parent -> child format, for example:

21

Bcome documentation, Release 3.0.0

grandparent:

description: "The grandparent"
type: collection

grandparent:parent:
description: "The parent"
type: collection

grandparent:parent:child:
description: "The child"
type: inventory

Any networking configuration declared in a parent node in the networks.yml configuration will be inherited by any
child node, unless expressly overidden in the child. This allows children to inherit networking configuraton from their
parent (e.g. a GCP authorisation) but override where appropriate (e.g. a location or region). The same is true for SSH
configuration. For more information, see Namespace attributes).

Any metadata declared in a parent node will also be inherited in any child node, unless expressly overidden in the
metadata for that child. For more information, see The Metadata Framework.

This structure contextualises configuration, and allows for its re-use.

Note: Declared nodes can be of type: collection, inventory, inventory-subselect,
inventory-merge, eks-k8s-cluster, or gke-k8s-cluster

8.3 Declared Node Types

The following nodes type can be declared directly in the network config:

8.3.1 Collection

Collections may contain any number of other collections and any number of inventories, or kubernetes clusters. It is
denoted by type collection.

"my_collection":

type: collection
description: My collection

Note: Your installation must have at least one, and only one root collection. All other nodes are located below the
root. This collection references your Estate, as it contains within it all other nodes.

8.3.2 Inventory

An inventory contains servers, either populated from a particular cloud account or from a statically defined manifest.
It is denoted by type inventory.

22 Chapter 8. Nodes

Bcome documentation, Release 3.0.0

"my_inventory":

type: inventory
description: My inventory

8.3.3 Sub-selected Inventory

A Sub-selected Inventory contains servers that have been populated as a result of applying filters to an Inventory. It is
denoted by type inventory-subselect.

It requires an origin Inventory referenced by the subselect_from) attribute upon which the subselect is actioned,
in addition to a filter block.

"root_collection":

type: collection
description: My root collection

"root_collection:my_inventory":
type: inventory
description: My Inventory

"root_collection:my_sub_selected_inventory":
type: inventory_subselect
description: My Sub-selected Inventory
subselect_from: my_inventory
filters: ...

Note that the ‘subselect_from’ key denotes a breadcrumb to the subselected from inventory (minus the root collection).
For example, consider the following:

"estate":

type: collection
description: Root collection

"estate:platform":
type: collection
description: Platform collection

"estate:platform:production":
type: collection
description: Production environment

"estate:platform:production:servers":
type: inventory
description: All my servers

You could create a sub-selection from the ‘servers’ Inventory as follows:

"estate:platform:production:app_servers":

type: inventory-subselect
description: My application servers for platform production
subselect_from: platform:production:servers
sub_filter: {}

8.3. Declared Node Types 23

Bcome documentation, Release 3.0.0

Note: The root collection key in the sub-select_from attribute - in this instance ‘estate’ - is implicit.

Note: See: Namespace attributes for sub_filter options.

8.3.4 Merged Inventory

A merged inventory is the result of a union of two or more Inventories and/or Sub-selected inventories. It is denoted
by type inventory-merge.

It requires contributing Inventories and/or contributing Sub-Selected-inventories to be specified using the ‘contribu-
tors’ attribute. For example:

"merged:frontend":

type: inventory-merge
description: Production and Development frontend servers
contributors:
- production:frontend
- development:frontend

Hint: Use Merged Inventories to create ‘Multi-cloud’ and/or ‘Hybrid-cloud’ views.

A Merged Inventory may have contributors from the same or different networks within the same Cloud, different
Clouds, or from statically declared manifests.

8.3.5 GKE Cluster

A GKE Kubernetes Cluster, hosted in Google Cloud Platform. It is denoted by type gke-k8s-cluster.

"foo:bar:production-cluster":

type: gke-k8s-cluster
description: My production cluster
cluster:
location: gcp-location
name: cluster-name

network:
override: attribute
override: another

Note: When loaded by the framework, a hierarchy of nodes will be automatically created beneath the GKE or EKS
cluster nodes. By default, this is a hierarchy of Namespaces, to Pods, to Containers. Others may be loaded when in
a Kubernetes cluster context, using the vrender and vfocus functions. All these nodes are navigable in the usual
way, and can be used with the Registry and Metadata framework.

24 Chapter 8. Nodes

Bcome documentation, Release 3.0.0

8.3.6 AWS Cluster

An EKS Kubernetes cluster hosted in Amazon Web Services. It is denoted by type eks-k8s-cluster.

"foo:bar:production-cluster":

type: eks-k8s-cluster
description: My production cluster
cluster:
name: CLUSTER_NAME
account_id: AWS_ACCOUNT_ID # needed to infer the cluster's arn

Note: Inventories, EKS and GKE clusters are dynamic node types. Whilst they can be placed inside any other
collection nothing can be placed beneath them as their contents are auto-populated.

8.4 System Node Types

System node types are automatically populated into specific declared node types:

8.4.1 Server

A Server directly represents a server from a cloud provider (determined by your network configuration, see: network-
configuration-attributes) , or one from a statically defined manifest (see static-manifests).

Servers are used to populate Inventories.

8.4.2 Kubernetes Node Types

Many common Kubernetes types are modelled as Bcome nodes:

• Namespace

• Ingress

• Service

• Deployment

• Pod

• Container

• Secret

• Cron Job

and some uncommon ones:

• Istio VirtualService

A abstract Bcome node type - a Crd, or Custom Resource Definition - is returned for any ad-hoc objects returned
that do not have an explicit Bcome Kubernetes node type to assign it. This means that any object returned by the
Kubernetes API may be incorporated into your framework installation.

As for all Bcome nodes, Kubernetes node types are provided with convenience accessors and are extensible within the
framework for custom orchestration tasks.

8.4. System Node Types 25

Bcome documentation, Release 3.0.0

26 Chapter 8. Nodes

CHAPTER 9

@node

@node is an instance of a node (see: @node).

• Whenever you’re in a Console session, you are in the scope of an instance of @node.

• When you use Keyed Access to key into a node the last node key will reference an instance of @node, e.g. if
you key into foo:bar, @node will encapsulate node ‘bar’.

• An instance of @node is made available to you within your orchestration scripts.

@node is the Ruby object that encapsulates the current node.

Note: See Navigation for the difference between the Console and Keyed-access.

9.1 Interacting with @node

You may directly interact with @node as follows:

• By invoking Menu commands (see: Command Menu).

• By invoking custom Registry tasks (see: Registry Overview)

• By accessing public-instance methods made available by the framework (see @node methods)

27

Bcome documentation, Release 3.0.0

28 Chapter 9. @node

CHAPTER 10

SSH

SSH is core to the Bcome framework as all interactions with servers are conducted over SSH.

This is either in the form of programmatic interactions when Bcome is used for orchestration, where Bcome will
interrogate your local ssh-agent for your configured keys, or where the framework delegates to your local operating
system in order to initiate SSH terminal sessions.

It is HIGHLY recommended that you have SSH keys setup on the machines with which you wish to interact and a
running ssh-agent.

Note: Bcome uses the -J syntax rather than ProxyCommand to traverse SSH proxies. An SSH version compatible
with the -J flag, such as OpenSSH 7.3 or greater, is required to be installed on the connecting client & proxies.

Bcome will delegate to your local Operating System for all SSH interactions.

Warning: Ensure that you have your ssh-keys added to your local ssh-agent.

Bcome will reference your ssh-agent’s socket via the SSH_AUTH_SOCK environment variable and make use of
your configured ssh-keys.

For access to servers where keys are not configured, authorisation will delegate to the installed configuration.

29

Bcome documentation, Release 3.0.0

30 Chapter 10. SSH

CHAPTER 11

Overview

11.1 Introduction

A Bcome installation is configured through the definition of a networks.yml configuration file, where you -

• Declare nodes through parent-child relationships

• Declare your nodes’ configuration elements, for example, your SSH architecture.

To begin, navigate to your project directory, and initialize your project using:

bcome init

For more information see: Installing and Initializing Bcome.

Hint: Understand how nodes work in Bcome: Nodes.

Your installation’s architecture will be determined by how you lay out your nodes.‘

31

Bcome documentation, Release 3.0.0

32 Chapter 11. Overview

CHAPTER 12

Namespace attributes

Here you’ll find the full list of attributes you may use within your networks.yml file in order to define your Nodes:

12.1 Namespace Block

Used to configure a node

33

Bcome documentation, Release 3.0.0

at-
tribute
key

description op-
tional

notes

type Used to define the
node type.

no See Nodes for further information
Permitted values are ‘collection’, ‘inventory’, ‘inventory-subselect’ and
‘inventory-merge’.

de-
scrip-
tion

A description of your
node.

no Your description will be used as a label within your installation’s UI.

net-
work

A hash of attributes
defining a Cloud
Provider configura-
tion.

yes If left blank, any Inventories inheriting this configuration will not be popu-
lated with servers unless a Statically defined manifest has been configured
Restricted to nodes of type ‘collection’, ‘inventory’, ‘gke-k8s-cluster’ and
‘eks-k8s-cluster’.
See Network attributes.

ssh_settingsA hash of attributes
used to define an SSH
architecture.

yes Leave this blank and Bcome will default to initiating direct SSH connection
attempts only (i.e. no proxies) and will fallback to using your terminal user
as your SSH username.
Restricted to nodes of type ‘collection’ and ‘inventory’ only.
See SSH Settings Attributes.

sub_filterA hash of attributes
used to further filter a
list of machines from
an inventory.

yes Restricted to nodes of type ‘inventory-subselect’ only.
If you’re sub-filtering a ‘gcp’ inventory, your filters are a Hash of GCP tags
and their values.
If you’re sub-filtering an ‘aws’ inventory, your filters are a Hash of EC2
and their values.

over-
ride_identifier

A regular expression
used to rewrite the
names of servers
within an inventory

yes Restricted to nodes of type ‘inventory’, ‘inventory-subselect’ and
‘inventory-merge’.
A regular expression with a single selector is expected, for example given a
server named “Foo_Bar” and a regular expression of “[a-z]*_([a-z]*)” the
server will be renamed “Bar”.

hid-
den

A toggle to hide a
node from view.

yes set to ‘true’ or ‘false’
Hidden nodes may still be interacted with, but will not appear in the user
interface.

clus-
ter

A hash of attributes
used to specify a
GKE cluster.

yes Restricted to nodes of type ‘gke-k8s-cluster’ and ‘eks-k8s-cluster’ only.
See EKS & GKE Cluster Attributes.

Note: Note that ssh_settings and network configuration may be inherited and overidden in child nodes.

See Inheritance & overrides

12.1.1 Network attributes

A Hash of attributes used to populate the top-level network attribute.

Used to configure a Cloud-provider.

See the full list of configurable attributes here:

34 Chapter 12. Namespace attributes

Bcome documentation, Release 3.0.0

attribute
key

description op-
tional

notes

type The cloud provider
type

yes Set to “gcp” for Google Cloud Platform. Set to “ec2” for Amazon
Web Services.

Google Cloud platform specific network attributes

at-
tribute
key

description optional notes

project GCP project id Re-
quired
for ‘gcp’
provider
type

Be careful to set this to the project id, and not the project name.

zone GCP zone Re-
quired
for ‘gcp’
provider
type

For a full list of zones see: Zones & Clusters.

authen-
tica-
tion_scheme

GCP authentication
scheme

Re-
quired
for ‘gcp’
provider
type

Supported schemes are ‘oauth’ or ‘service_account’. For
OAuth 2.0 setup see Adding GCP authorisation

ser-
vice_scopes

An array of GCP auth
scopes passed to GCP
during authorisation.

Optional
for ‘gcp’
provider
type

A minimum scope of compute.readonly is required in order to
list resources. For OAuth 2.0 cloud-platform is required.

filters
(‘gcp’
provider)

A filter string to filter in-
stances returned by GCP.

Optional
for ‘gcp’
provider
type

As an example, to return running instances, set filter to “sta-
tus:running” For further information on topic filtering, see
GCP Topic Filtering.
You may also filter by label. Search for ‘by_label’ in our
Guides for of examples this.

ser-
vice_account_credentials

The name of the service
account credentials json
file, to be found within
the .gauth directory.

Optional
for ‘gcp’
provider
type

Required for the service_account authentication scheme only.
See Adding GCP authorisation.

se-
crets_filename

The name of your OAuth
2.0 clients secrets file-
name to be found within
the .gauth directory.

Optional
for ‘gcp’
provider
type

Required for the oauth authentication scheme only. See Adding
GCP authorisation.

Note: Google Cloud Platform require a minimum permission of compute.instances.list for OAuth 2.0
authorisations. Ensure that any users attempting to authorize by OAuth 2.0 have been configured with a role containing
this permission.

12.1. Namespace Block 35

https://cloud.google.com/compute/docs/regions-zones#zones_and_clusters
https://www.googleapis.com/auth/compute.readonly
https://www.googleapis.com/auth/cloud-platform
https://cloud.google.com/sdk/gcloud/reference/topic/filters
https://guides.bcome.com

Bcome documentation, Release 3.0.0

AWS specific network attributes

attribute key description optional notes
creden-
tials_keys

The reference to an AWS credentials
key from your .aws/keys file

Required for ‘ec2’
provider type

For setup see Adding AWS au-
thorization.

provision-
ing_region

An EC2 provisioning region Required for ‘ec2’
provider type

e.g. eu-west-1

filters (‘ec2’
provider)

A hash of ec2 filters sent during the
lookup request to ec2.

Optional for ‘ec2’
provider type

For a full list of available filters,
see EC2 Filter List.

12.1.2 EKS & GKE Cluster Attributes

A hash of attributes uses to populate the top-level cluster attribute for eks-k8s-cluster or gke-k8s-cluster nodes.

attribute
key

description optional notes

location The zone where the cluster is located,
e.g. europe-west1-c.

Required for GKE. GKE nodes only, i.e. nodes of type
gke-k8s-cluster.

name Cluster name. Required for GKE
and EKS

GKE and EKS nodes.

ac-
count_id

AWS account id. Required for EKS. EKS nodes only, i.e. nodes of type
eks-k8s-cluster.

12.1.3 SSH Settings Attributes

A hash of attributes used to populate the top-level ssh_settings attribute.

Note: Namespaces without an SSH Settings element will default to initiating direct connection attempts against your
servers using your local terminal username as the SSH username. Proxied ssh connections will not be possible.

See the full list of configurable attributes here:

36 Chapter 12. Namespace attributes

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/describe-instances.html

Bcome documentation, Release 3.0.0

at-
tribute
key

de-
scrip-
tion

op-
tional

notes

user The
SSH
user-
name
to use
for SSH
connec-
tions.

Yes Most implementations will leave this blank, causing Bcome to fallback to using the local
terminal user’s username as the SSH user. Setting a username within will override this.

proxy An
array of
proxies

Yes If proxies are configured, Bcome will craft an SSH connection jumping through each
proxy in the order in which they are declared in the proxy array, position 0 being first
hop.
If a proxy is a Bcome node, its public_ip_address will be used to route the connection if
present. If there is no public_ip_address available, Bcome will default to using the node’s
internal_ip_address to route the connection.
Using this pattern you may proxy via multiple hops into your networks.
See Proxy Attributes.

Proxy Attributes

Used to define an SSH Proxy.

See the full list of configurable attributes here:

at-
tribute
key

description op-
tional

notes

host_lookupThe type of host lookup to perform. No Permitted values are: ‘by_bcome_node’,
‘by_host_or_ip’ or ‘by_inventory_node’.
Note that ‘by_host_or_ip’ must be used to refer-
ence proxies without public interfaces.

names-
pace

A bcome node in breadcrumb format, e.g.
node_key:node_key

Yes Required for host_lookup type
‘by_bcome_node’. Allows for referencing
proxy machines that can be defined anwywhere
within the Bcome installation.

host_id A hostname or ip address, or reference to a host
from your ssh config or hosts file.
In other words, anything that your underlying
OS can resolve as an SSH target

Yes Required for host_lookup type ‘by_host_or_ip’.

node_identifierThe name of the node within the same Inven-
tory that you wish to declare as your SSH proxy
machine.

Yes Required for host_lookup type
‘by_inventory_node’.

bas-
tion_host_user

The ssh username to be used for bypassing the
proxy.

Yes Default to the Bcome installation’s local SSH
username.

12.1. Namespace Block 37

Bcome documentation, Release 3.0.0

38 Chapter 12. Namespace attributes

CHAPTER 13

Inheritance & overrides

Network and Ssh Configuration (see Namespace attributes) are inherited by all of a node’s children, at which point
they may be overidden to customise the attributes at odee level.

For example:

"estate":

type: collection
description: My Estate
network:
foo: value
bar: other value

"parent:child":
type: inventory
description My Inventory

The ‘child’ element’s network attributes looks as follows:

--
network:

foo: value
bar: other value

Then consider:

"estate":

type: collection
description: My Estate
network:
foo: value
bar: other value

(continues on next page)

39

Bcome documentation, Release 3.0.0

(continued from previous page)

"parent:child":
type: inventory
description My Inventory
network:
bar: overriden value

The child element’s network Element has been partially overriden resulting in the following:

--
network:

foo: value
bar: overriden value

40 Chapter 13. Inheritance & overrides

CHAPTER 14

Alternative configuration

14.1 Overriding network.yml with CONF=

If you want to use an alternative network configuration to the default file at

.
Gemfile
bcome

networks.yml

then create your new configuration, e.g.

.
Gemfile
bcome

networks.yml
alternative-configuration.yml

To use your alternative file, set a reference to it using the CONF= environment variable when invoking Bcome, for
example:

CONF=bcome/alternative-configuration.yml bcome command

Hint: Using the CONF environment variable is useful if you want to support different views of your infrastructure
(e.g. providing views to teams based on role), or if you want to provide access to multiple installations from the same
project.

14.2 Ad-hoc overriding of network.yml with ME=

You may already have seen how configuration may be inherited and overidden in Bcome (see Inheritance & overrides).

41

Bcome documentation, Release 3.0.0

This can be also be done by referencing an overrides configuration file, and referencing it using the ME environment
variable.

For example, consider the following Yaml configuration:

foo:bar:
ssh_settings:
user: "ubuntu"

Save it to the bcome/ configuration directory:

.
Gemfile
bcome

networks.yml
username-override.yml

You may now invoke it as follows:

ME=bcome/username-override.yml bcome command

In the example given above this particular configuration override will override the ssh username for node “foo:bar”.
You may override any configuration in this way.

This can be useful for

• Supporting a temporary configuration of an installation, for example in order to orchestrate a server installed
with a bare operating system pre-bootstrapping, where only the default system users are present.

• Providing a local override for attributes

Note: You can use both CONF= and ME= at the same time. CONF will load an alternative networks.yml configuration
file, and ME will provide overrides.

14.3 The me.yml configuration file

As well as setting an override using ME=, you may place the same contents in a file named me.yml, as follows:

.
Gemfile
bcome

networks.yml
me.yml

Contents in me.yml will be automatically loaded and used to override your Network configuration.

Hint: This is the best way to provide your own personal override within collaborative projects.

14.4 Overriding an individual server’s configuration

To override an individual server’s configuration, you must use a server-overrides.yml configuration file:

42 Chapter 14. Alternative configuration

Bcome documentation, Release 3.0.0

.
Gemfile
bcome

networks.yml
server-overrides.yml

For example, to override the connection details for ‘server_a’ within node ‘foo:bar’, your server-overrides.yml config-
uration would look as follows:

foo:bar:server_a:
ssh_settings:
user: a_different_username

Note: Any server-specific overrides must be placed within the server-overrides.yml override file, and cannot be placed
in the general or overriden network configuration.

14.4. Overriding an individual server’s configuration 43

Bcome documentation, Release 3.0.0

44 Chapter 14. Alternative configuration

CHAPTER 15

Static manifests

15.1 Overview

If you have infrastructure on-site, or in any other provider for which Bcome does not yet provide a driver, you may
utilise a Static Manifest.

A Static Manifest is a list of manually configured servers that can be used to populate a specified Inventory.

For example, consider the following simple Network configuration:

estate:

type: collection
description: My Collection

estate:onsite:
type: inventory
description: My onsite inventory

Above we have defined a Collection housing a single Inventory (see Nodes). There is no Network defined (see:
Namespace attributes), and therefore no configured cloud provider to populate the Inventory.

Now create a file called static-cache.yml and save it to your Bcome configuration directory as follows:

.
Gemfile
bcome

networks.yml
static-cache.yml

Here’s a simple example of a Static Manifest entry within our static-cache.yml file that would populate our Inventory
with two servers:

estate:onsite:

(continues on next page)

45

Bcome documentation, Release 3.0.0

(continued from previous page)

- identifier: file_server_one
public_ip_address: 123.123.123.12
description: My server
cloud_tags:
data:

a_key: a_value
another_key: another_value

- identifier: some_other_server
public_ip_address: 678.678.678.67
internal_ip_address: 10.2.23.12
description: My other server

15.2 Attribute List

at-
tribute
key

description op-
tional

notes

iden-
tifier

The server name. No Bcome will automatically swap whitespace for underscores, and auto-
increment duplicate identifiers. A server’s identifier is incorporated
into its node breadcrumb.

de-
scrip-
tion

The server description No A description of the server. This will appear in Bcome’s UI.

pub-
lic_ip_address

The public interface IP
address.

Yes You may use a hostname here also.

inter-
nal_ip_address

The internal interface IP
address.

Yes You may use a hostname here also.

lo-
cal_network

Set to true or false.
Indicates whether the
server is to be found on
the local network.

Yes If a set with local_network: true, Bcome will initiate SSH connections
on the internal_ip_address. If set to false, connections will fallback to
proxy (if configured in the node’s network configuration) or to the
public_ip_address.

cloud_tagsA Hash of tags keys and
values, keyed on :data

Yes See Tag attributes for structure

15.2.1 Tag attributes

Cloud tag attributes have the following YAML structure:

cloud_tags:

data:
tag_key_1: tag_value_1
tag_key_2: tag_value_2

46 Chapter 15. Static manifests

CHAPTER 16

Navigation

Bcome is used by navigating to a node, and invoking the method of your choice.

That method may either be a built-in function (see: Command Menu), or a custom function you’ve added yourself as
part of your installation, and available via the Registry (see Registry Overview).

You may either traverse your nodes via The Console before invoking your method, or you may invoke it directly from
your terminal using Keyed-Access.

Let’s imagine you have Nodes laid out in the following parent-child relationship:

.
parent

child
grandchild

16.1 The Console

Bcome exposes a REPL (read-eval-print loop) shell, built on top of Ruby’s IRB (interactive Ruby) shell.

Each node is loaded into a distinct shell session, which you may then interact with directly.

16.1.1 Basic navigation

Enter the Console at the root node:

> bcome

List your nodes:

> ls

Traverse to the ‘child’ node, and onward to ‘grandchild’:

47

Bcome documentation, Release 3.0.0

> cd child
> cd grandchild

Or key in directly using the breadcrumb:

> cd child:grandchild

Or key directly to a breadcrumb referenced from the root of your installation:

> cd #child:grandchild

Go back up a level:

> back # OR cd ..

Exit back to you terminal:

> exit!

Hint: For a full list of in-built commands see menu.

For accessing your custom commands, see the Registry (Registry Overview).

16.2 Keyed-Access

Bcome provides a shortcut to any node, referred to as Keyed-Access, where the node breadcrumb is included as a
parameter to bcome.

16.2.1 Enter the Console using Keyed-Access.

To enter the CLI directly at our ‘grandchild’ node, you would enter the following command:

> bcome child:grandchild

This allows you to start a Console session directly at the node you require, without having to traverse your tree.

Hint: Invoking ‘ls’ on any node will list its direct children, whilst invoking ‘tree’ on any node will list the Bcome
tree structure beneath.

See Executing Commands for how to execute commands in Keyed-access or Console mode.

48 Chapter 16. Navigation

CHAPTER 17

Command Menu

Bcome has a series of in-built commands that can be executed within your nodes.

Within any given node, invoke menu to pull up the available in-built commands.

Note: When in Keyed-Access mode (see: Navigation) command parameters are whitespace rather than comma-
delineated as they are for Console mode.

For a guide to executing commands, see Executing Commands.

All in-built commands are described below:

17.1 Command lists

com-
mand

description node
type

menu Returns a list of all the in-built commands available at the current node. All
registry Returns a list of all the custom commands configured to be available at the current

node.
All

49

Bcome documentation, Release 3.0.0

17.2 Navigation commands

command description node type
cd name
cd name1:name2
cd #root-
name:name2

Enter a console session for a child node.
Console only

Collection, Inventory,
Sub-selected Inventory,
Merged Inventory.

back Return to the parent node console session.
If at the root node, or within the node at which the Console was
initiated, invoking ‘back’ will exit the Console.
Console only

All

exit see ‘back’, above.
Console only

All

exit! Exits a Console session.
Console only

All

17.3 Selection Commands

command description node type
workon identi-
fier1, identifier2
. . .

Work on specific node only, inactivating all others from the
selection.
Console only

Collection, Inventory, Sub-
selected Inventory, Merged
Inventory.

enable identi-
fier1, identifier2
. . .

Re-enable a node within the node.
Console only

Collection, Inventory, Sub-
selected Inventory, Merged
Inventory.

disable identi-
fier1, identifier2
. . .

Remove a node from the selection.
Console only

Collection, Inventory, Sub-
selected Inventory, Merged
Inventory.

enable! Enable all node within the selection.
Console only

Collection, Inventory, Sub-
selected Inventory, Merged
Inventory.

disable! Disable all node within the selection.
Console only

Collection, Inventory, Sub-
selected Inventory, Merged
Inventory.

first A shortcut available in Keyed Access mode only when
traversing node.
e.g. bcome foo:bar:first:command
Keyed-access only

Collection, Inventory, Sub-
selected Inventory, Merged
Inventory.

17.4 Interactive Commands

Interactive are those that interact directly with servers or containters.

50 Chapter 17. Command Menu

Bcome documentation, Release 3.0.0

command description available to node
ping Test connectivity against all servers in the selection. All excluding Kuber-

netes.
run command1,
command2

Execute a command to be run against all servers contained in the
selection.

Any (runs over entire se-
lection)

interactive Access an interactive ssh pseudo-shell allowing you to execute com-
mands against all servers that are children or grandchildren of the
current node.

All

tunnel local
port, destina-
tion port

Create a Tunnel over SSH
Transparently bypasses proxies.

Server.

pseudo_tty
command

Invoke a pseudo-tty session. Server

execute_script
path/to/bash/script

Execute a local bash-script over ssh against all servers in the selec-
tion.

Server

ssh identifier Ssh to a server Inventory, Sub-selected
Inventory, Merged In-
ventory.

ssh Ssh to a server Server

17.5 File & script commands

command description node
type

put local/path, /remote/path Upload a file (or directory, recursively) over SCP to all servers in the
selection.

All

rsync local/path /remote/path Upload a file (or directory, recursively) over rsync (faster) to all
servers in the selection.

All

put_str “string contents” /re-
mote/path

Write a file /to/remote/path to all servers in the selection from a
String.

All

get /remote/path Download a file or directory. Server

17.5. File & script commands 51

Bcome documentation, Release 3.0.0

17.6 Informational

command description node type
ls List all child node.

Console only
Collection, Inventory, Sub-
selected Inventory, Merged
Inventory.

lsr Reload (e.g. from remote) then list all child nodes. Any Kubernetes node.
lsa List all active child nodes

See Selection Commands
Console only

Collection, Inventory, Sub-
selected Inventory, Merged
Inventory.

tree
tree(depth:
integer)

Print a tree view of all child nodes and their sub-nodes, or print
a tree view up to depth integer.

Collection, Inventory, Sub-
selected Inventory, Merged
Inventory.

meta List all Metadata available to the current node.
See: :doc: ../metadata/metadata-commands for working with
metadata.

All

tags List all cloud provider tags/labels associated with the server(s) Server, Inventory, Sub-selected
Inventory, Merged Inventory.

routes Print SSH routing tree. All, excluding Kubernetes nodes

52 Chapter 17. Command Menu

Bcome documentation, Release 3.0.0

17.7 Kubernetes

com-
mand

description node type

config Display the config for a node’s associated kubernetes object. Any kubernetes node.
logs Aggregate logs from all containers into one live stream. Any kubernetes node.
path-
ways

Render a tree view of all routing pathways (hosts->path->pod-
>container).

Any kubernetes node.

helm Access an interactive helm shell scoped to the underlying kubernetes
object’s kubernetes context.

GKE Cluster, EKS Cluster,
Kubernetes namespace.

kubectl Access kubectl scoped to the underlying kubernetes object’s kuber-
netes context.

GKE Cluster, EKS Cluster,
Kubernetes namespace.

reau-
thorize

Reauthorize with the cluster API Any kubernetes node.

tunnel Forward a Pod port to your local machine Pod
de-
scribe

Describe the underlying kubernetes object. Any kubernetes node

export Export a cluster or cluster namespace’s context so that it may be used
with external applications outside of Bcome

GKE Cluster, EKS Cluster,
Kubernetes namespace.

info Cluster information. GKE Cluster, EKS Cluster.
info_dumpCluster information dump. GKE Cluster, EKS Cluster.
interac-
tive

Execute commands in an interative shell against all containers. Any kubernetes node.

pseudo_ttyExecute a command using an interactive session. Kubernetes container.
sh Enter a shell on a running container. Kubernetes container.
focus
object

Switch workspace to focus on a specific kubernetes resource type.
e.g. for secrets, focus secret

GKE Cluster, EKS Cluster.

vrender
view

Render an alternative hierarchy view.
Enter ‘menu’ to see available options.

GKE Cluster, EKS Cluster.

vfocus
view

Switch your workspace to use an alternative hierarchy view.
Enter ‘menu’ to see available options.

GKE Cluster, EKS Cluster.

read Decode and output the contents of a kubernetes secret. K8Cluster Secret
trigger Trigger a cronjob. K8Cluster Cronjob

17.8 Miscellaneous

com-
mand

description node type

reload Re-populate an inventory from its source, e.g. reload all servers from within an
inventory from its remote cloud.

Inventory, Sub-
selected Inventory

cache Save a local copy of an inventory.
The cache is saved as a static manifest. (see: Static manifests)
To disable the Cache, remove the static manifest.

Inventory.

17.7. Kubernetes 53

Bcome documentation, Release 3.0.0

54 Chapter 17. Command Menu

CHAPTER 18

Executing Commands

Let’s imagine you have Nodes laid out in the following parent-child relationship:

.
parent

child
grandchild

Now let’s say you want to invoke a command on the grandchild node. This command may be available from the
standard menu for this node type, it may be a method available from the Ruby language (each node being a Ruby
object at its core), or your method may be a custom task you’ve added to your Bcome Registry (See Registry Overview)
and associated with the grandchild node.

What are the options for invoking this command?

18.1 Invoking a command when in the console

Given command ‘foo’ available to node parent:child:grandchild, how would you invoke it?

> bcome child:grandchild
> foo

OR

> bcome
> cd child:grandchild
> foo

OR

> bcome
> cd child
> cd grandchild
> foo

55

Bcome documentation, Release 3.0.0

OR, using dot-notation

> bcome
> child.granchild.foo

OR, a dot-notation example passing in parameters:

> bcome
> child.grandchild.run "parameter"

Hint: When you a enter a Bcome session you are in the scope of an instance of a Ruby object (see: @node),
representing the current node.

Each node within your Bcome instance will be represented by a different Ruby object.

18.2 Invoking commands with Keyed-access

To invoke command ‘foo’ available to node parent:child:grandchild, you would enter the following command in your
terminal:

> bcome child:grandchild:foo

OR, to pass in parameters

> bcome child:grandchild:run "/some/command parameter"

18.3 Invoking commands from orchestration scripts

An orchestration script is just a Ruby script configured to be attached, and executed in the context, of a specific Bcome
node.

If you have a node instance, for example @node, then any available command may be invoked directly on it.

For example, given a node in an instance var @node, and a command, :foo, you would:

@node.foo

Hint: Any command, be they in-built menu commands (see Command Menu), public-methods on a given node
object, or a custom-command you’ve defined yourself in the Registry (see Registry Overview), is accessible in this
way.

For more information on writing orchestration scripts see External Scripts and Internal Scripts.

For information on how to integrate custom scripts into your installation, see Registry Overview

56 Chapter 18. Executing Commands

CHAPTER 19

@node methods

Various public-instance methods are made available on the @node object.

These are useful for debugging in Console sessions and for enhancing your orchestration scripts.

Notable accessors are detailed below:

19.1 On all nodes

19.1.1 Networking accessors

The network driver

network_driver

Its configuration, as a Hash:

network_driver.config

The authenticated Cloud credentials for the current node, returned as a Hash. For EC2 this will return the node’s
access key and secret key, for GCP it will return an access_token and the project name. This is useful should you wish
to extend an authenticated Bcome session into a custom integration.

network_driver.network_credentials

The SSH driver, an instance of ::Bcome::Ssh::Driver

ssh_driver

The Net::SSH::Proxy::Jump configuration, should the node be configured to proxy its connections:

ssh_driver.proxy

57

Bcome documentation, Release 3.0.0

19.1.2 Server accessors

All servers present within the current node:

machines

19.1.3 Metadata accessors

The metadata object for this node (::Bcome::Node::Meta::Local):

metadata

All metadata for this node as a Hash

metadata.all

19.2 On server nodes

The cloud server if @node is an EC2 server (returns an instance of Fog::Compute::AWS::Server):

ec2_server

The cloud server if @node is a GCP server (returns an instance of Google::Apis::ComputeBeta::Instance):

gcp_server

Return all configured tags/labels if a cloud server:

tags_h

Find cloud tags/labels value by key:

cloud_tags.fetch(:tag_or_label_name, "optional_default_value")

Note: @node may also be extended by applying Monkey Patches.

58 Chapter 19. @node methods

CHAPTER 20

Monkey Patches

The Bcome framework may be extended by applying a monkey patch.

To create a patch ensure you have a ‘patches’ directory, as follows:

.
project_directory

bcome
patches

Any Ruby file placed into ‘patches’ with a .rb extension will be loaded into the framework.

As an example, to add a method named ‘foo’ that returns ‘bar’ onto a GCP server, create a file called my_patch.rb and
place it into the patches directory:

.
project

bcome
patches

my_patch.rb

Within it add the following code:

class Bcome::Node::Server::Dynamic::Gcp
def foo
puts "bar"

end
end

All GCP server instances would now be patched with the new ‘foo’ method.

See here for Bcome’s github source.

59

https://en.wikipedia.org/wiki/Monkey_patch
https://github.com/webzakimbo/bcome

Bcome documentation, Release 3.0.0

60 Chapter 20. Monkey Patches

CHAPTER 21

Optimising Ssh

When interacting with machines over SSH Bcome will attempt to connect to all machines in any given selection at
once, re-trying connection attempts and auto-reconnecting should connections be lost.

It will also cache the connections until the Bcome session has terminated.

This can be problemmatic for some jump hosts with default configuration, that may not be setup to handle the volume
of concurrent connection requests that Bcome will make (one per server in your selected node).

This can be resolved by correctly setting your jump host’s SSH daemon’s MaxStartups and MaxSessions at-
tributes (if you’re running OpenSSH) in line with your installation’s requirements.

Note: As a general rule of thumb set MaxStartups and MaxSessions to be equal to the number of machines you need
to manage via a particular jump host. A lower number will result in dropped connections, and although Bcome will
catch these and re-connect, this can result in a slower startup time.

61

Bcome documentation, Release 3.0.0

62 Chapter 21. Optimising Ssh

CHAPTER 22

Ping

22.1 Overview

SSH Connections may be tested with Bcome’s ping command.

For each server in scope the connection will be tested and a status (containing the server’s connection configuration)
returned.

The returned status will look like this:

"your_estate:an_inventory:some_server" => {
"connection" => "success",
"ssh_config" => {

:user => "guillaume",
:timeout => 1,
:proxy => [

[0] {
:host_lookup => "by_bcome_node",
:namespace => "your_inventory:a_jump_host",
:proxy_host => "12.345.678.90",
:user => "guillaume"

}
]

}
}

}

Note: Failed connections will be coloured red, successful green. Each is marked with a connection status of “failed”
or “success” respectively.

63

Bcome documentation, Release 3.0.0

22.2 Usage

Let’s imagine you have Nodes laid out in the following parent-child relationship:

.
parent

child1
child2

And let’s assume that ‘child1’ and ‘child2’ are inventories containing servers.

22.2.1 Ping all the servers within your Estate

bcome ping

22.2.2 Ping all the servers within a given inventory

bcome child1:ping

22.2.3 Ping an individual server within a given inventory

bcome child2:your_server:ping

22.2.4 Ping from the Bcome Console

bcome child1
ping

Note: Bcome caches all SSH connections, with the exception of those made during a Ping.

64 Chapter 22. Ping

CHAPTER 23

SSH to a server

You may SSH to a server either using Keyed-Access, or directly from the Bcome console (see: Navigation).

Let’s imagine you have Nodes laid out in the following parent-child relationship:

.
parent

child
server

23.1 SSH with Keyed Access

bcome child:server:ssh

23.2 From the Console

From the child inventory node:

bcome child
ssh server

From the server node:

bcome child
cd server
ssh

Hint: Use the ‘tree’ function or invoke ‘ls’ on any node to see which child nodes are available beneath it. See:
Command Menu.

65

Bcome documentation, Release 3.0.0

66 Chapter 23. SSH to a server

CHAPTER 24

Interactive Mode

Interactive mode allows you to enter repeated commands in a transparent context to either single, or multiple
servers/containers without having to enter repeated run commands (see: Command Menu).

Hint: When in console mode you can use the in-built workon command to modify the scope of your selection. See
Command Menu or enter menu when in console mode for more information on how to use workon.

Having established a connection, Interactive mode then provides a secondary interactive pseudo-shell, following which
any commands you enter are executed on every server/container.

Warning: Interactive mode can be dangerous.

You will be executing commands in parallel on every machine in your selection. Be sure you understand what
you’re running (and with what privileges) before using this function.

Interactive mode is useful when managing groups of servers/containers in a real-time scenario for example:

• to apply security patches

• to test en masse for vulnerabilities

• to run system updates

• to compare configurations

Note: Interactive mode will create a connection to every server/container that is a child or grand-child of the current
node.

Once connected, connections are cached for speed with reconnections automatic.

For more information on optimising your SSH for interactive mode see Optimising Ssh

Interactive mode may be invoked with the interactive command on any node. See Executing Commands.

67

Bcome documentation, Release 3.0.0

68 Chapter 24. Interactive Mode

CHAPTER 25

Run

The ‘run’ command allows you to execute commands on your servers (over SSH), or on your Kubernetes containers
(transparently, via Kubectl). You can target either individual, or groups of servers/containers where the same command
is executed in parallel on all machines in your selection.

Hint: When in console mode you can use the in-built workon command to modify the scope of your selection. See
Command Menu or enter menu when in console mode for more information on how to use workon.

Run may be invoked with the run command on any node. See Executing Commands.

Note: When in console mode Bcome caches all SSH connections, with re-connection automatic, resulting in faster
execution of repeated ‘run’ commands.

For more information on optimising your SSH connections see Optimising Ssh

69

Bcome documentation, Release 3.0.0

70 Chapter 25. Run

CHAPTER 26

Tunnel

As Bcome handles your SSH configuration for you via your Network Configuration, setting up a tunnel to access a
remote service - even one behind any number of proxies - becomes simple.

Let’s imagine you want to open up access on local port 9200 to an Elastic Search service running remotely on port
9200, and that your Nodes are setup as follows:

.
estate

production
elastic_data_nodes

data_node_1
data_node_2
data_node_3

management
jump_host

26.1 From the Console

bcome production:elastic_data_nodes:data_node_1
the_tunnel = tunnel 9200, 9200

The tunnel connection is kept open until the Console session is terminated, or until the tunnel is manually closed, as
follows:

the_tunnel.close!

Note: You may open as many SSH tunnels as you require during a Console session.

71

Bcome documentation, Release 3.0.0

26.2 Using Keyed Access

bcome production:elastic_data_nodes:data_node_1:tunnel 9200 9200

The tunnel connection is kept open until you Control+C to close the session, or until a SIGINT is received by the
Bcome process.

26.3 From an orchestration script

Where @node is an instance of your server node:

Open a tunnel
tunnel = @node.tunnel(9200, 9200)

Close the tunnel
tunnel.close!

Note: You may open as many SSH tunnels as you require from an Orchestration script.

For more information on orchestration scripts see External Scripts and Internal Scripts.

72 Chapter 26. Tunnel

CHAPTER 27

Pseudo-tty

Bcome’s pseudo-tty mode allows you to access a pseudo terminal from any server nodes.

As Bcome handles your SSH configuration for you via your Network Configuration, setting up a pseudo-tty session
becomes simple.

This is useful should you wish to do something like the following:

• Tail a remote log file from your local server

• Open up a remote console, e.g. a MySQL console, Rails console, MongoDb etc

27.1 How to use pseudo-tty within Bcome

27.1.1 Use case 1: tail a remote file

You wish to tail a remote log file, and you usually SSH in to your server and type in the following:

tail -f /path/to/your/file.log

Given a server node named app1 within a collection node of production, you would instead:

bcome production:app1:pseudo_tty "tail -f /path/to/your/file.log"

27.1.2 Use case 2: open a mysql console

You wish to open up a mysql console, and you’d usually SSH in to your server and type in the the following:

mysql -u user -p password -h hostname database

Given a server node named app1 within a collection node of production, you would instead:

73

Bcome documentation, Release 3.0.0

bcome production:app1:pseudo_tty "mysql -u user -p password -h hostname database"

27.2 Access from the Console

The pseudo_tty function is also accessible directly from the Console.

bcome node
cd server
pseudo_tty "your command"

27.3 Incorporating Pseudo-tty sessions as a Registry hook

You may wish to be able to access a database console directly from Bcome as follows:

bcome staging:app1:db

The ‘db’ invocation would be a Bcome registry hook (see: Registry Overview), referencing an internal script (see
Internal Scripts), within which you would declare the pseudo-tty function as follows:

def execute
@node.pseudo_tty("mysql -u user -p password -h host")

end

74 Chapter 27. Pseudo-tty

CHAPTER 28

Interactive Kubectl

28.1 Overview

Interactive Kubectl allows you to access a kubectl shell scoped to a particular Kubernetes Cluster or Namespace.

• No need to set or change contexts

• Bcome manages your kubeconfig

• Handle multiple clusters at once, irrespective of origin (EKS, GCP etc)

• Interact with multiple clusters at once from orchestration scripts

28.2 Additional system requirements

You will need kubectl installed and in PATH.

28.3 Usage

Invoke kubectl on any Kubernetes Cluster node and you will be presented with a shell. Any commands you enter
will be delegated to kubectl, in the context of the Cluster or Cluster Namespace on which it was invoked.

You won’t need to enter ‘kubectl’ when you pass commands in the resulting subshell, e.g. rather than ‘kubectl get
pods’ you can just enter ‘get pods’. Similarly, when you’re in the context of a Cluster Namespace you won’t have to
enter “-n namespace”, this also being managed for you by the framework.

Hint: For guidance on how to execute commands, see Executing Commands

75

Bcome documentation, Release 3.0.0

76 Chapter 28. Interactive Kubectl

CHAPTER 29

Interactive Helm

29.1 Overview

Interactive Helm allows you to access a helm shell scoped to a particular Kubernetes Cluster or Namespace.

• No need to set or change kubectl contexts

• Bcome manages your kubeconfig

• Handle multiple clusters at once, irrespective of origin (EKS, GCP etc)

• Interact with multiple clusters at once from orchestration scripts

29.2 Additional system requirements

You will need helm installed and in PATH.

29.3 Usage

Invoke helm on any Kubernetes Cluster or Namespace node and you will be presented with a shell. Any commands
you enter here will be delegated to helm, in the context of the Cluster or Cluster Namespace on which it was invoked.

You won’t need to enter ‘helm’ when you pass commands in the resulting subshell, e.g. rather than ‘helm ls’ you can
just enter ‘ls’. Similarly, when you’re in the context of a Cluster Namespace you won’t have to enter “-n namespace”,
this also being managed for you by the framework.

Hint: For guidance on how to execute commands, see Executing Commands

77

Bcome documentation, Release 3.0.0

78 Chapter 29. Interactive Helm

CHAPTER 30

Container shell

When in the scope of a Kubernetes container node you can access a shell on the remote container via Bcome.

30.1 Usage

Invoke sh on any Bcome node whose associated container supports the “/bin/sh” shell and you will enter a session on
the container.

Let’s imagine the following Pod -> Container hierarchy:

.
pod_foo

container_bar

Access a console session and enter the container shell for container container_bar:

> bcome pod_foo:container_bar
> sh

Or access directly from your terminal, using keyed access:

> bcome pod_foo:container_bar:sh

Note: For more guidance on how to execute commands, see Executing Commands

30.2 Switching shells

By default ‘sh’ assumes a “/bin/sh” shell present on your container. In console mode (see Navigation) you may pick
an alternative shell.

79

Bcome documentation, Release 3.0.0

For example, given the following available shells

• bash (/bin/bash)

• ash (/bin/ash)

• sh (/bin/sh)

• dash (/bin/dash)

You would select ash by invoking the shell as follows:

> sh("ash")

80 Chapter 30. Container shell

CHAPTER 31

The Metadata Framework

When scripting or otherwise interacting with the Bcome Console, the framework will let you access user-defined
metadata.

This is useful when writing orchestration scripts.

As with all other Bcome configuration, Metadata is configured using YAML, and may be encrypted (see Metadata
Encryption).

31.1 Metadata YAML

To enable metadata you’ll need a ‘metadata’ directory under your ‘bcome’ configuration directory, as follows:

.
project

bcome
metadata

Any .yml file you place in this directory will be loaded into the framework.

Your Metadata is then defined by declaring attributes onto a node breadcrumb.

For example, given a node with a breadcrumb of “foo:bar”, to assign it Metadata, you would create a .yml file within
your ‘metadata’ directory with the following contents:

foo:bar:
key: value
other_key: other_value

31.2 Metadata Inheritance

Metadata is inherited within child nodes, where it may be overidden.

81

Bcome documentation, Release 3.0.0

For example, given two node “parent” and “parent:child”, with the following Metadata YAML defined:

parent:

key: value
other_key: other_value

parent:child:
key: overidden_value

The “parent:child” node overrides, i.e. re-defines, the ‘key’ attribute, whilst inheriting ‘other_key’. Its Metadata looks
like this:

key: overidden_value
other_key: other_value

31.3 Accessing Metadata

See Metadata Commands for accessing metadata.

82 Chapter 31. The Metadata Framework

CHAPTER 32

Metadata Encryption

Metadata files (see: The Metadata Framework) may be encrypted with a single key.

This allows you to collaborate with others without sharing sensitive data directly (i.e. within your source control
system).

The encryption process uses a symmetric block cipher, AES-256-ECB

Note: The use of AES-256-ECB will become deprecated in a future release with an intended upgrade to AES-256-
CBC. An upgrade path will be provided for already encrypted files.

32.1 Encryption commands

32.1.1 Packing

Encryption is referred to as packing.

To pack all your metadata files, invoke the following:

bcome pack_metadata

You will be prompted for a Metadata key, which will be used to encrypt your data.

Should you now investigate your metadata directory, you will see that all your YAML files now have a .enc
counterpart.

Note: If any metadata YAML file already has a .enc counterpart, you will need to provide the same metadata key
used to encrypt that file in order to pack all the others.

83

Bcome documentation, Release 3.0.0

Hint: Commit only your .enc files to source control, and create a workflow around Packing & Unpacking.

32.1.2 Unpacking

Decryption is referred to as unpacking.

To unpack all your metadata files, invoke the following:

bcome unpack_metadata

You will be prompted for the same key as was used to Pack your metadata originally.

Warning: Should there be any differences between your .enc metadata files and their .yml counterparts during
unpacking, you will prompted for confirmation before proceeding.

The .yml files would otherwise be overwritten with the decrypted contents.

32.1.3 Metadata Diffs

To see the differences between your encrypted metadata and unpacked metadata, use the following command:

bcome diff_metadata

32.2 Changing your encryption key

To change your encryption key:

• ensure that your unpacked yml metadata contain the correct contents

• remove all *.enc files

• re pack your metadata with a new key, using the pack_metadata command.

84 Chapter 32. Metadata Encryption

CHAPTER 33

Metadata Commands

To return a list of all configured metadata:

meta # @node.meta

To return a Hash of all configured metadata:

metadata.all # or @node.metadata...

To fetch a specific metadata value by key

metadata.fetch(:key) # or @node.metadata...

To fetch a specific metadata value by key, providing a default value should the key not be found:

metadata.fetch(:key, { key: "default value }) # or @node.metadata...

To return an Array of all configured metadata keys:

metadata.keys # or @node.keys

85

Bcome documentation, Release 3.0.0

86 Chapter 33. Metadata Commands

CHAPTER 34

Bash scripting

You may execute a local bash script against servers in your collection using the execute_script command.

Let’s image you have the following Nodes setup:

.
project

inventory_one
server_a
server_b
server_c

inventory_two
server_d
server_e
server_f

And the following bash script, saved to your local system at /path/to/script.sh:

#!/bin/bash

echo "hello world"

exit 0

In order to execute the script against a single server, for example ‘server_a’ in ‘inventory_one’, you would invoke the
following:

bcome inventory_one:server_a:execute_script /path/to/script.sh

To execute the script against all servers in ‘inventory_two’, you would:

bcome inventory_two:execute_script /path/to/script.sh

Likewise, for all servers in your project:

87

Bcome documentation, Release 3.0.0

bcome execute_script /path/to/script.sh

Note: The examples above illustrate how bash scripts may run using Keyed Access (see: Navigation).

Hint: The Console allows for greater flexibility in working with selections of nodes. See ‘Selection Commands’ in
Command Menu.

88 Chapter 34. Bash scripting

CHAPTER 35

External Scripts

35.1 Overview

Ruby scripts that run outside the context of your installation are referred to as external scripts. These may be run
standalone, or integrated into your installation with an external method hook (see: Registry method types).

The most basic example of an external script can be seen below:

require 'bcome'

Define an orchestrator
orchestrator = ::Bcome::Orchestrator.instance

Load in a node
node = orchestrator.get("some:node:breadcrumb")

Work with your node
...

All nodes retrieved by the orchestrator are instances of @node.

Note: To return the root node using the orchestrator, pass a null breadcrumb i.e. orchestrator.get()

See Executing Commands for invoking commands and Command Menu for a list of commands.

See also @node methods for a list of public instance methods.

Hint: Any command available to you in the Console, using Keyed-Access or via the Registry is available to you
within your Ruby scripts.

89

Bcome documentation, Release 3.0.0

35.2 Some additional useful functions

Prompt for a metadata decryption key:

::Bcome::Node::MetaDataLoader.instance.prompt_for_decryption_key

Silence command output:

::Bcome::Orchestrator.instance.silence_command_output!

Initiate an SSH connection to all server instances within a given node (rather than lazy-load them):

with a progress bar
::Bcome::Ssh::Connector.connect(@node, show_progress: true)

without a progress bar
::Bcome::Ssh::Connector.connect(@node, show_progress: false)

90 Chapter 35. External Scripts

CHAPTER 36

Internal Scripts

Ruby scripts that run inside the context of your installation are referred to as internal scripts, and are loaded as
extensions to the framework.

Internal scripts are always invoked in the context of a node and can be configured to accept arguments (for integration,
see Registry Overview).

36.1 Getting started

Ensure that you have an ‘orchestration’ directory within your project’s ‘bcome’ directory, as follows:

.
project

bcome
orchestration

Any Ruby files placed in the ‘orchestration’ directory will be loaded into the project.

36.2 A basic orchestration script

All internal scripts are ruby classes that inherit from Bcome::Orchestration::Base and have a public method
named execute that takes no parameters.

module ::Bcome::Orchestration
class MyinternalScript < Bcome::Orchestration::Base

def execute
@node = the node context
@arguments = An argument Hash

end

(continues on next page)

91

Bcome documentation, Release 3.0.0

(continued from previous page)

end
end

The node context in which the internal script was called is available to you in the form of an instance variable named
@node.

See Executing Commands for invoking commands and Command Menu for a list of commands.

If arguments have been provided, they are available as a Hash from an instance variable named @arguments.

Note: To integrate your internal script into your installation, you must add it to The Registry. See Registry Overview
and Registry method types.

For a guide, see Internal Script Integration Guide.

36.3 Invoking internal scripts from within another

You can trigger an orchestration klass from within another (or in any context within Bcome).

Here’s how:

script = ::Bcome::Orchestration::MyOtherClass.new(node, arguments)
script.do_execute

Where node is an instance of a node.

36.4 Traversing nodes

An internal script is not restricted to the node context in which it is called - you may traverse contexts if you know the
node breadcrumb.

For example, given a node referenced by ‘my:other:inventory’, you may load it as follows:

orchestrator = ::Bcome::Orchestrator.instance
node = orchestrator.get("my:other:inventory")

Note that the parent (i.e. Estate) root node key is implicit.

36.5 Some additional useful functions

Prompt for a metadata decryption key:

::Bcome::Node::MetaDataLoader.instance.prompt_for_decryption_key

Silence command output:

::Bcome::Orchestrator.instance.silence_command_output!

Initiate an SSH connection to all server instances within a given node (rather than lazy-load them):

92 Chapter 36. Internal Scripts

https://guides.bcome.com/en/latest/the-registry/internal-commands.html

Bcome documentation, Release 3.0.0

with a progress bar
::Bcome::Ssh::Connector.connect(@node, show_progress: true)

without a progress bar
::Bcome::Ssh::Connector.connect(@node, show_progress: false)

36.5. Some additional useful functions 93

Bcome documentation, Release 3.0.0

94 Chapter 36. Internal Scripts

CHAPTER 37

Registry Overview

The purpose of the Registry is to place custom method hooks directly onto your Nodes. These method hooks are then
surfaced within Bcome, and allow you to call custom functionality within the context of the nodes associated with
them.

The registry may also be used to add method hooks onto nodes retrieved dynamically, such as nodes representing
Kubernetes objects.

Each Bcome node has its own Registry, the framework giving you a means of adding context-specific method hooks
to your application. In this way that you are able to build DRY interfaces, reusing method hooks in different contexts.

Note: The Registry is designed for reusability so that you may associate the same tasks with different nodes, DRY’ing
up your code.

Have a look also at the The Metadata Framework. By associating context-specific data to your nodes, the same
Registry task re-used becomes way more powerful.

Within any node in Bcome, invoke the registry method to view your available methods.

For configuration, see Registry Configuration File and Registry Configuration Attributes.

For examples see Registry method types.

For further information on Bcome’s in-built commands see Executing Commands and Command Menu.

Hint: Whilst providing convenience accessors for your orchestrative functions, adding Registry methods is the means
with which you build up your installation into a self-documenting application tailored to your own requirements.

95

Bcome documentation, Release 3.0.0

96 Chapter 37. Registry Overview

CHAPTER 38

Registry Configuration File

The Registry is configured with a configuration file named ‘registry.yml’, that is placed in your ‘bcome’ configuration
directory, as follows:

.
project

bcome
registry.yml

The YAML configuration is a simple Hash structure representing an Array of script declarations, each one keyed on a
Regular expression intended to match a specific Bcome node breadcrumb pattern.

(regular)expression.+:
- array
- of
- available
- scripts

(another|pattern)tomatch?:
- another
- list
- of
- scripts

Within Bcome, any node with a breadcrumb pattern matching a given Registry declaration’s regular expression, will
have that script available to it.

Let’s imagine you had the following node structure:

.
estate

aws
dev

app_servers

(continues on next page)

97

Bcome documentation, Release 3.0.0

(continued from previous page)

prod
app_servers

gcp
dev

app_servers
prod

app_servers

And let’s say you need to associate an orchestration script with every ‘app_server’ inventory.

Your regular expression could look as follows:

(aws|gcp):(dev|prod):app_servers
...

Note: The root node name (‘estate’ in the example above) is always implicit in registry declarations.

For information & examples on configuring scripts, see Registry method types. Our Guides site also has example
configurations.

98 Chapter 38. Registry Configuration File

https://guides.bcome.com

CHAPTER 39

Registry Configuration Attributes

Here you’ll find the full list of attributes for your registry.yml file (see: Registry Configuration File).

attribute
key

description optional

type the type of Registry declaration: shortcut, internal, or external. No
descrip-
tion

A description of your command. No

con-
sole_commad

The command to invoke within Bcome will invoke your Registry methiod No

group A group name. All commands with the same group are grouped together
when Registry declarations are listed

No

short-
cut_command

The remote command to execute when the script is invoked. Required for type
shortcut

run_as_pseudo_ttytrue OR false Optional for type
shortcut only

orch_klass Your orchestration class name. Required for type
internal

lo-
cal_command

The system command that is to be executed locally. Required for type
external

defaults A Hash of optional values passed in to your local command.
Available as ENV variables to external scripts, and from the @arguments
Hash to internal scripts.

Optional for types
external and
internal.

re-
strict_to_node

Set to ‘server’, ‘inventory’ (all inventory types), or ‘collection’.
Registry method will only be made available to nodes of the declared type.

Yes

Note: See Registry Configuration File for an introduction to the registry.yml configuration file.

99

Bcome documentation, Release 3.0.0

100 Chapter 39. Registry Configuration Attributes

CHAPTER 40

Registry method types

There are three types of Registry methods:

40.1 Shortcuts

A shortcut references a command that you would otherwise invoke manually.

The example below declares a shortcut to the command sudo puppetserver ca list --all made available
via a method hook of list_certs

gcp:(dev|prod):xops:puppet:
- type: shortcut

description: List certificates
console_command: list_certs
shortcut_command: "sudo puppetserver ca list --all"
group: certificates

Any node with a breadcrumb matching the regular expression /gcp:(dev|prod):xops:puppet/ would have
the list_certs method hook available to it.

40.2 Internal Hooks

An Internal Hook allows for the invoking of Internal ruby scripts.

Below I declare a method hook to a custom orchestration class - SystemStatus. The node context in which the
class is invoked would be made available to the orchestration script instance via the @node instance variable.

gcp:(dev|prod):app_servers:
- type: internal

(continues on next page)

101

Bcome documentation, Release 3.0.0

(continued from previous page)

description: "Web HTTP status"
console_command: web_status
group: status
orch_klass: SystemStatus

Any node with a breadcrumb matching the regular expression /gcp:(dev|prod):app_servers/ would have
the ‘web_status’ method hook available to it.

See Internal Scripts for information on how to write your internal scripts.

Note: The full orchestration class node is not passed to the orch_klass parameter - only the class name.

40.2.1 Passing arguments

Internal Hook invocations may be passed arguments (see Registry Configuration Attributes) when called in Keyed-
Access mode (see: Navigation).

For example, should you wish to pass an argument ‘foo’ with a value of ‘bar’ to the Internal script above for node
‘gcp:prod:app_servers’ you would invoke the following:

bcome gcp:prod:app_servers:web_status foo=bar

To pass in multiple arguments, you could invoke the following:

bcome gcp:prod:app_servers:web_status first=value second=othervalue

Within your internal script, your arguments are made available to you within the @arguments variable.

40.3 External Hooks

An External Hook allows for the invoking of External Scripts

Below I declare a method hook to call a capistrano deployment script.

"(aws|gcp):(prod|dev):wbzsite(:.+)?":
- type: external

description: "Deploy web application"
console_command: deploy
group: deployment
local_command: bundle exec cap wbz_frontend deploy build=%build%
defaults:
build: "master"

When declaring a method hook to an external script, Bcome will append an environment variable named
bcome_context to the command. This allows you to link your external script to the node context in which it
was called.

40.3.1 The node context

If you invoked the method hook above as follows:

102 Chapter 40. Registry method types

Bcome documentation, Release 3.0.0

bcome gcp:prod:wbzsite:deploy

Bcome would execute the following command:

bcome_context="gcp:prod:wbzsite" bundle exec cap wbz_frontend deploy build=master

Within your external script you would load your node context as follows:

require 'bcome'

orchestrator = ::Bcome::Orchestrator.instance
node = ORCH.get(ENV["bcome_context"])

...

40.3.2 Passing arguments

External Hook declarations may be configured to take arguments (see Registry Configuration Attributes).

This is achieved using placeholders delineated with %. For example should you wish to add ‘foo’ as an argument
attribute to command ‘my/command’, such that it would be executed as follows -

my/command foo=value

You would define your ‘local_command’ attribute within your external hook declaration as follows:

local_command: my/command foo=%foo%

And you would set a default value for foo:

local_command: my/command foo=%foo%
defaults:

foo: value

Any command argument is made available to your External script as an environnent variable. For example, to load
your ‘foo’ argument within your script:

foo = ENV['foo']

40.3. External Hooks 103

Bcome documentation, Release 3.0.0

104 Chapter 40. Registry method types

CHAPTER 41

Overview

105

Bcome documentation, Release 3.0.0

106 Chapter 41. Overview

CHAPTER 42

Configuration

107

	Requirements
	Getting Started
	Installing and Initializing Bcome
	Adding AWS authorization
	Adding GCP authorisation
	Estate
	Network Configuration
	Nodes
	@node
	SSH
	Overview
	Namespace attributes
	Inheritance & overrides
	Alternative configuration
	Static manifests
	Navigation
	Command Menu
	Executing Commands
	@node methods
	Monkey Patches
	Optimising Ssh
	Ping
	SSH to a server
	Interactive Mode
	Run
	Tunnel
	Pseudo-tty
	Interactive Kubectl
	Interactive Helm
	Container shell
	The Metadata Framework
	Metadata Encryption
	Metadata Commands
	Bash scripting
	External Scripts
	Internal Scripts
	Registry Overview
	Registry Configuration File
	Registry Configuration Attributes
	Registry method types
	Overview
	Configuration

